6 Referências Bibliográficas

ADHIKARY, B.B. e MUTSUYOSHI, H. Study on the bond between concrete and externally bonded CFRP sheet. Fibre reinforced plastics for reinforced concrete structures. Proceedings of the fifth international conference. Cambridge, U.K., 2001. V.1. P. 371-378.

ALMAKT M.M.; BALÁZS G.L.; PILAKOUTAS (1998). Strengthening of RC Elements by CFRP Plates Local Failure. 2nd Int. PhD Symposium in Civil Engeneering, Budapest.

AMERICAN CONCRETE INSTITUTE, ACI 440 F – 2000. Guidelines for the selection, design and installation of fiber reinforced polymer (FRP) systems for external strengthening of concrete structures. *97p.*, USA, 2000.

AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM – D3039/D3039, 2000 – Standard test method for tensile properties of polymer matrix composite materials. *USA*.

ARAÚJO, A. C. N. (2002) Estudo experimental do reforço à flexão de vigas de concreto armado utilizando compósitos com tecidos de fibras de carbono. Dissertação de Mestrado, PUC-Rio, Rio de Janeiro, 2002.

ARDUINI, M.; NANNI, A. (1997) **Parametric Study of Beams with Externally Bonded.** ACI Structural Journal, Setember – October, pp. 493 – 501.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 6118: **Projeto de estruturas de concreto – procedimentos**. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 9776: Agregados – **Determinação da massa específica de agregados miúdos por meio do frasco de Chapman**. Rio de Janeiro, 1987.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 7217: Agregados – Determinação da composição granulométrica. Rio de Janeiro, 1987. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – NBR 5738: **Moldagem e cura de corpos-de-prova cilíndricos ou prismáticos de concreto**. Rio de Janeiro, 1994.

BIZINDAVYI, L.; K. NEALE (1999). **Tranfer Lengths and Bond Strengths for Composites bonded to Concrete.** ASCE Journal of Composites for Construction, **3** (4), pp.153 – 160.

BROSENS, K.; D. Van Gemert (1997). Plate End Shear Design for External CFRP Laminates. In: Fracture Mechanics of Concrete Structures, pp. 1793 – 1804.

CHAJES, M. J.; FINCH, W. W.; JANUSZKA, T. F. e THOMSON, T. A. Bond and force transfer of composites material plates bonded to concrete. ACI Structural Journal, 1996; 93 (2). P. 208-217.

CHEN, J.F.; TENG, J.G. Anchorage strength models for FRP and steel plates bondede to concrete. Journal of Structural Engineering, 2001; 127 (7). P. 784-791.

CRUZ S. J.M.; BARROS J.A. O.; FARIA R. (2001). Assessing the Embedded Lenght of Epoxy-Bonded Carbon Laminates by Pull-out Bending Test. Proceedings of the conference in construction, J.Figueiras, L.Juvandes and R. Faria (eds), Porto, Portugal, 217-222.

FIB – Bulletin 14 External Bonded FRP Reinforcement for RC Structures 2001.

HARMON T.; VITKIP L. (1999). **Bond Development Between Carbon Fiber Reinforced Polymers and Concrete**. School of Engineering & Applied Science, Washington University.

HOLZENKÄMPFER, P. (1994). Ingenieurmodelle des Verbunds Geklebter Bewehrung für Betonbauteile. Tese de Doutorado. T.U. Braunschweing. Deustschland.

KHALIFA A.; ALKHRDAJI T.; NANNI A.; LANSBURG S.(1999). Ancorage of Surface Mounted FRP Reinforcement. Concrete international: Design and Construction, Vol 21, N^o

KURIHARA, S.; MATSUI, S.; ALI, M. Bonding shear strength of adhesives between concrete elements. Repair, rehabilitation and maintenance of concrete

structures and innovations in design and construction. Fourth international conference, Seoul, Korea, 2001. P.551-569.

LEUNG C.K.Y.; Y. YANG (2002). A Fracture - Based Model For Debonding of FRP Plate from Concrete Substrate. 15th ASCE Engineering Mechanics Conference, June 2-5, Columbia University, N. Y.

MACHADO, M. G. (2004) Estudo Experimental da Ductilidade de Vigas em Concreto Armado Reforçadas à Flexão Utilizando Compósitos com Tecidos de Fibras de Carbono. Dissertação de Mestrado, 301p. Puc-Rio, Rio de Janeiro.

MAEDA, TOSHIYA; ASANO, YASUHIKO; SATO, YASUHIKO; UEDA, TAMON; KAKUTA, YOSHIO (1997). **A Study on Bond Mechanism of Carbon Fiber Sheet.** Proceedings of the Third International Symposium on Non – Metalic (FRP) Reinforcement for Concrete Structures, Vol 1, Japan, pp.279 – 286.

MALEK, A.;SAADATMANESH, H.; EHSANI, M. (1998). Prediction of Failure load of R/C Beams Strengthened with FRP plate Due to Stress Concentration at the Plate End. ACI Structural Journal, March – April, pp.142 – 152.

MAZEN, M.A.; GYÖRGY L.B.; KYPROS P.(1998) Strengthening of RC Elements by CFRP Plates Local Failure. 2and Int. PhD Symposium in Civil Engineering, Budapest.

MENEGHEL, J. (2005) Análise Experimental da Aderência entre o Concreto e Compósitos com Tecido de Fibras de Carbono. Dissertação de Mestrado, PUC-Rio, Rio de Janeiro.

MILLER B; NANNI A. (1999). **Bond Between CFRP Sheets and Concrete.** 5th Materials Congress, Cincinnati, OH, L.C. Bank Editor, Maio 10-12, Pp. 240-247.

NAKABA, K.; KANAKUBO, T.; FURUTA, T. e YOSHIZAWA, H. Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 2001; 98 (3). P.359-367.

NEUBAUER, U. N.; ROSTÁSY, F. S. Bond failure of CFRP-plates at inclined cracks – Experiments and fracture mechanics model. Forschungsarbeiten 1995-1999. Heft 144. iBMB, TU Braunschweig, Deutschland, 1999. pp.59-62.

RHEOTEC Catalogo para Aditivos & Auxiliares para concreto; Fibra de Carbono e Resinas Epóxidicas, São Paulo, Brasil (s.d.).

SÁNCHEZ E., BARBOSA M.T.G., VELASCO M.S.L., EINSFELD R. A., FERREIRA, T.V.B. (2004) Equação Diferencial da Adêrencia Entre Materiais Compósitos de Fibra de Carbono e o Concreto. Jornadas Sud-Americanas de Ingenieria Estructural, Mendoza, Argentina. CD–ROM.

SÁNCHEZ, E. **Reforço de Vigas de Concreto Estrutural Através de Chapas Metálicas Coladas com Epóxi.** Seminário: Reforço e Recuperação de Estruturas, Juiz de Fora, 1998. v.1, n.2 pp. 28-39.

TÄLJSTEN, B. (1996). Strengthening of Concrete Prisms using the Plate Bonding Technique. Int. J. of Fracture, 82, pp. 253 – 266.

TÄLJSTEN, B. (1997). **Strengthening of Concrete Structures.** Proceedings of FIP Symposium, Innsbruck , March, pp. 873 – 881.

YANG X., WEI J., NANNI A., DHARANI L.R. (2001). **Stresses in FRP Laminates Wrapped Around Corners.** Proc., ASC 16th Annual Conference – Virginia Tech. Blacksburg, V.A., September 9-12, M.W. Hyer and A.C. Loos, Eds., Paper 088, CD-ROM.

YANG X.; NANNI A.; CHEN G. (2001). Effect of Corner Radius on the **Perfomance of Externally Bonded Reinforcement.** Non-Metallic Reinforcement for Concrete Stuctures – FRPRCS- 5, Combrige, July 16-18, p.197-204.

YUAN, H.; Z. S. WU; YOSHIZAWA (2001). Theoretical Solutions of Interfacial Stress Transfer of Externally Bonded Steel/Composite Laminates. Journal of Structural Mechanics and Earthquake Engineering, pp. 27 – 39.

Anexo A Análise Granulométrica e Massas dos Agregados

De acordo com a NBR 7217/1987 foi realizada a determinação da composição granulométrica dos agregados graúdo e miúdo para concreto. A quantidade de material utilizado foi de 3000 g de agregado graúdo e 1000 g de agregado miúdo. Foram determinados o módulo de finura e a dimensão máxima característica dos agregados. As Tabelas A.1 e A.2 mostram, respectivamente, os valores dos resíduos passantes e retidos nas peneiras utilizadas no ensaio para os agregados miúdo e graúdo.

Os ensaios foram realizados Laboratório de Estruturas e Matérias (LEM) da PUC-Rio,

Tabela A.1 – Resultados da analise granulométrica do agregado miúdo: resíduos passantes e retidos.

Peneiras	Malha Resíd		duos	Resíduos acumulados (%)	
	()	g	%	Passado	Retido
3"	76,2				
2"	50,8				
11/2"	38,1				
1"	25,4				
3/4"	19,1				
1/2"	12,7				
3/8"	9,52				
1/4"	6,35			100	
4	4,76	18	1,8	98,2	1,8
8	2,38	78	7,8	90,4	9,6
16	1,19	199	19,9	70,5	29,5
30	0,59	299	29,9	40,6	59,4
50	0,297	301	30,1	10,5	89,5
100	0,149	71	7,1	3,4	96,6
200	0,074				
Fundo		34	3,4	0	
Total		1000	100		286,4

Peneiras	M alha	Resíduos		Resíduos acumulados (%)	
	(mm)	g	%	Passado	Retido
3''	76,2				
2''	50,8				
11/2"	38,1				
1"	25,4			100	
3/4''	19,1	46	1,5	98,5	1,5
1/2''	12,7				
3/8''	9,52	2110	70,3	28,1	71,9
1/4''	6,35				
4	4,76	654	21,8	6,3	92,1
8	2,38				92,1
16	1,19				92,1
30	0,59				92,1
50	0,297				92,1
100	0,149				92,1
200	0,074				92,1
Fundo		190	6,3		
Total		3000	100		626,0

Tabela A.2 – Resultados da analise granulométrica do agregado graúdo: resíduos passantes e retidos.

> Dimensão máxima característica do agregado

A dimensão máxima característica do agregado é a porcentagem retida acumulada igual ou imediatamente inferior a 5% em massa correspondente à abertura nominal, em milímetros, da malha da peneira da série normal.

• Agregado miúdo

$$D_{\rm max} = 4,76\,mm$$
 (A.1)

• Agregado graúdo

$$D_{\rm max} = 19,1mm$$
 (A.2)

Módulo de finura:

O modulo de finura do agregado foi calculado pela soma das porcentagens retidas acumuladas nas peneiras da série normal e dividindo esta soma por 100 %.

• Agregado miúdo

$$MF = \frac{286,4}{100} = 2,86 \tag{A.3}$$

• Agregado graúdo

$$MF = \frac{686.9}{100} = 6,87 \tag{A.4}$$

> Massa específica real do agregado miúdo

A massa específica real do agregado miúdo foi obtida de acordo com a NBR 9776 utilizando o Frasco de Chapman. O calculo foi feito segundo a seguinte expressão:

$$\gamma = \frac{500}{L - 200} \tag{A.5}$$

onde γ é a massa específica do agregado miúdo em g/cm^3 , e L é a leitura do frasco (volume ocupado pelo conjunto água – agregado miúdo) em cm^3 .

A massa inicial utilizada foi de 500 g e colocou-se água até a marca de $200 cm^3$ do frasco. A leitura feita foi de $389 cm^3$, obtendo-se o seguinte valor para a massa específica:

$$\gamma = \frac{500}{389 - 200} = 2,65 \, g \, / \, cm^3 \tag{A.6}$$

> Massa específica real do agregado graúdo

A massa especifica real do agregado graúdo foi obtida utilizando-se o vaso sifonado com capacidade de 5.000 ml, sendo que a massa inicial utilizada foi de 1.000 g colocou-se água até a marca de 1.000 cm^3 do frasco e a leitura feita foi de 1.382 cm^3 , obtendo-se o seguinte valor para a massa específica:

$$\delta_b = \frac{1000}{1382 - 1000} = 2,62 \, g/cm^3 \tag{A.7}$$

> Massa específica aparente do agregado miúdo

A massa especifica aparente foi determinada utilizando um recipiente retangular e calculada dividindo-se a massa de brita contida no recipiente pelo volume do recipiente.

$$V_{\text{recipiente}} = 15 \times 31,5 \times 31,5 \text{ cm}^3 = 14883,75 \text{ cm}^3 \tag{A.8}$$

$$P_{recipiente} = 7,3 \, kg \tag{A.9}$$

$$P_a = 31,1-7,3 = 23,8 \ kg = 23800 g \tag{A.10}$$

$$\gamma_a = \frac{23800}{14883,75} = 1,60 \, g/cm^3 \tag{A.11}$$

> Massa específica aparente do agregado graúdo

A massa especifica aparente foi determinada utilizando um recipiente retangular e calculada dividindo-se a massa de brita contida no recipiente pelo volume do recipiente.

$$P_b = 31,3-7,3 = 24,0\,kg = 24000\,g \tag{A.12}$$

$$\gamma_b = \frac{24000}{14883,75} = 1.61 \, g \, / \, cm^3 \tag{A.13}$$

Anexo B Resultado dos Ensaios de Módulo de Elasticidade do Concreto

Este anexo mostra os dados obtidos no ensaio para determinação do módulo de elasticidade do concreto, por meio de tabelas e gráficos, para as três dosagens do concreto dos corpos-de-prova.

Os ensaios foram realizados no Laboratório de Estruturas e Matérias (LEM) da PUC-Rio.

As tabelas a seguir mostram o carregamento aplicado de acordo com a NBR 8522, as tensões ,as deformações obtidas pela média dos dois extensômetros e o módulo de elasticidade secante para cada corpo-de-prova utilizado nos ensaios.

Conforme visto no capítulo 3,0 módulo de deformação secante é calculado de acordo com a seguinte equação.

$$E_{c} = \frac{\sigma_{n} - \sigma_{\inf}}{\varepsilon_{n} - \varepsilon_{0}}$$
(B.1)

B.1 Série de concretagem I; corpos-de-prova com $f_c = 23,32 MPa$

➢ CP1

Tabela B.1 – Resultados obtidos do ensaio de módulo de elasticidade do concreto para o CP1 da série I.

Leituras	Carga P (kN)	Tensão σ _c (MPa)	Deformação esp. Média $\boldsymbol{\varepsilon}_c$ (%c)	$ \begin{array}{c} Tensão \\ (\sigma_n - \sigma_{inf}) \\ (MPa) \end{array} $	$Deformação$ $Esp.$ $(\varepsilon_n - \varepsilon_{inf})$ (%0)	Módulo de Elasticidade Secante E _c (GPa)
	2,070	-0,264	0,01519			
	-3,988	-0,508	-0,00118			
0,5 MPa	-4,368	-0,556	-0,00176			

$_{0,1} f_c$	-20,021	-2,550	-0,06355	-1,994	-0,06179	32,27
	-21,032	-2,679	-0,0656	-2,123	-0,06384	
$0,2 f_c$	-43,690	-5,566	-0,15349	-5,009	-0,15173	33,01
	-43,661	-5,562	-0,15488	-5,005	-0,15312	
$\int_{0,3} f_c$	-58,432	-7,444	-0,233435	-6,887	-0,231675	29,73
	-59,241	-7,547	-0,240975	-6,990	-0,239215	
$0,4$ f_c	-78,341	-9,980	-0,359685	-9,423	-0,357925	26,33
	-80,257	-10,224	-0,38331	-9,667	-0,38155	
$0,5 f_c$	-98,046	-12,490	-0,51222	-11,934	-0,51046	23,38
	-98,680	-12,571	-0,528845	-12,014	-0,527085	
$0,6 f_c$	-119,11	-15,174	-0,688045	-14,618	-0,686285	21,30
	-117,28	-14,940	-0,718945	-14,384	-0,717185	
$0,7 f_c$	-136,97	-17,449	-0,915185	-16,893	-0,913425	18,49
	-138,74	-17,674	-0,964725	-17,118	-0,962965	
$0,8 f_c$	-156,38	-19,922	-1,163775	-19,366	-1,162015	16,67
	-159,41	-20,308	-1,3096	-19,752	-1,30784	
	-162,10	-20,651	-1,339495			
	-165,13	-21,036	-1,39677			
	-171,01	-21,785	-1,491815			
	-175,93	-22,413	-1,60418			
	-183,10	-23,326	-1,777035			
	-187,91	-23,938	-1,98781			
	-191,21	-24,358	-2,30282			
	-192,18	-24,482	-2,71078			
	-189,39	-24,126	-3,364955			
Ruptura	-173,44	-22,095	-2,64847			

Módulo de Elasticidade CPI 1

Figura B.1 – Gráfico tensão x deformação específica para o CP1 dos corpos-de-prova com $f_c = 23,32MPa$.

➢ CP2

Tabela B. 2 – Resultados obtidos do ensaio de módulo de elasticidade do concreto para o CP2 dos da série I.

Leituras	Carga P (kN)	Tensão σ _c (MPa)	Deformação esp. Média E _c (‰)	$ \begin{array}{c} Tensão \\ (\sigma_n - \sigma_{inf}) \\ (MPa) \end{array} $	$Deformação$ $Esp.$ $\left(\varepsilon_n - \varepsilon_{inf}\right)$ (%c)	Módulo de Elasticidade Secante E _c (GPa)
	-2,70	-0,344	0,01365			
	-2,71	-0,345	0,01354			
0,5MPa	-4,01	-0,510	0,00973			
	-5,90	-0,752	0,01165	-0,241	0,00193	
$0,1 f_c$	-20,35	-2,592	-0,06668	-2,082	-0,07640	27,25
	-20,75	-2,643	-0,07080	-2,132	-0,08053	
$0,2 f_c$	-40,74	-5,190	-0,18472	-4,680	-0,19445	24,07
	-41,74	-5,317	-0,19712	-4,807	-0,20684	
$0,3 f_c$	-59,53	-7,583	-0,31113	-7,072	-0,32085	22,04
	-58,58	-7,462	-0,32133	-6,951	-0,33105	
$0,4 f_c$	-79,49	-10,126	-0,45708	-9,616	-0,46681	20,60
	-78,65	-10,019	-0,47951	-9,509	-0,48924	

$0,5 f_c$	-98,39	-12,534	-0,62665	-12,024	-0,63637	18,89
	-97,70	-12,446	-0,65696	-11,936	-0,66668	
$0,6 f_c$	-117,37	-14,952	-0,82841	-14,441	-0,83813	17,23
	-125,86	-16,033	-0,91883	-15,523	-0,92855	
$0,7 f_c$	-136,53	-17,392	-1,06283	-16,881	-1,07255	15,74
	-138,76	-17,677	-1,19545	-17,166	-1,20518	
$0,8 f_c$	-155,93	-19,864	-1,44220	-19,354	-1,45193	13,33
	-159,15	-20,274	-1,68260	-19,763	-1,69233	
	-164,06	-20,900	-1,72370	-20,389	-1,73343	
	-167,09	-21,285	-1,77002	-20,775	-1,77974	
	-169,07	-21,538	-1,79944	-21,027	-1,80917	
	-170,33	-21,698	-1,83796	-21,188	-1,84769	
	-172,10	-21,924	-1,88092	-21,413	-1,89065	
	-172,31	-21,950	-1,92634	-21,439	-1,93606	
Ruptura	-173,91	-22,154	-2,03317	-21,644	-2,04290	

Módulo de Elasticidade CPI 2

Figura B.2 – Gráfico tensão x deformação específica para o CP2 dos corpos-de-prova com $f_c = 23,32 MPa$.

B.2 Série de concretagem II; corpos-de-prova com $f_c = 28,42MPa$

➢ CP1

Tabela B. 3 – Resultados obtidos do ensaio do módulo de elasticidade do concreto para o CP1 da série II.

Leituras	Carga P (kN)	Tensão σ _c (MPa)	Deformação esp. Média E _c (‰)	Tensão $(\sigma_n - \sigma_{inf})$ (MPa)	Deformação Esp. $(\varepsilon_n - \varepsilon_{inf})$ (%0)	Módulo de Elasticidade Secante E _c (GPa)
0,5MPa	-4,15	-0,53	0,0080			
$0,1 f_c$	-28,59	-3,64	-0,0712	-3,113	-0,0792	39,2957
	-29,34	-3,74	-0,0650			
$0,2 f_c$	-55,22	-7,03	-0,1699	-6,505	-0,1779	36,5599
	-56,69	-7,22	-0,1701			
$0,3 f_c$	-82,63	-10,53	-0,2836	-9,996	-0,2916	34,2768
	-84,19	-10,72	-0,2890			
$0,4 f_c$	-111,04	-14,15	-0,4157	-13,616	-0,4237	32,1350
	-110,04	-14,02	-0,4160			
$0,5 f_c$	-136,70	-17,41	-0,5651	-16,884	-0,5731	29,4619
	-137,08	-17,46	-0,5799			
$0,6 f_c$	-164,29	-20,93	-0,7488	-20,399	-0,7568	26,9527
	-166,28	-21,18	-0,7960			
$0,7 f_c$	-187,45	-23,88	-0,9489	-23,350	-0,9569	24,4007
	-187,69	-23,91	-0,9596			
$0,8 f_c$	-191,37	-24,38	-0,9940			
	-191,31	-24,37	-1,0147			
	-190,42	-24,26	-1,0167			
	-190,12	-24,22	-1,0598			
	-190,80	-24,31	-1,0656			

	-190,99	-24,33	-1,0705			
	-192,46	-24,52	-1,0791			
	-195,11	-24,86	-1,0960			
	-194,53	-24,78	-1,1002			
	-193,51	-24,65	-1,1010			
	-194,89	-24,83	-1,1077			
	-202,40	-25,78	-1,1543			
	-203,87	-25,97	-1,1735			
	-205,24	-26,15	-1,1909			
	-206,58	-26,32	-1,2032			
	-208,27	-26,53	-1,2259			
	-210,83	-26,86	-1,2870			
	-211,97	-27,00	-1,3110			
	-213,88	-27,25	-1,3400			
	-217,12	-27,66	-1,3855			
	-219,35	-27,94	-1,4259	-27,413	-1,4339	19,1176
	-219,76	-27,99	-1,4586			
	-220,63	-28,11	-1,4767			
	-217,79	-27,74	-1,6992			
	-220,16	-28,05	-1,7284			
	-222,57	-28,35	-1,7617			
Ruptura	-223,04	-28,41	-1,8057			

Módulo de Elasticidade CPII 1

Figura B.3 – Gráfico tensão x deformação específica para o CP3 dos corpos-de-prova com $f_c = 28,42 MPa$.

B.3 Série de concretagem III; corpos-de-prova com $f_c = 37,08MPa$

➢ CP1

Tabela B.4 – Resultados obtidos do ensaio do módulo de elasticidade do concreto para o CP1 da série III.

	Caraca	Tensão	Deformação	Tensão	Deformação	Módulo de
Leituras	Carga P	σ	esp.	$(\sigma_{1} - \sigma_{1})$	Esp.	Elasticidade
	(kN)	(MPa)	Média E _c	(MPa)	$(\varepsilon_n - \varepsilon_{inf})$	Secante
			(%0)		(%0)	E _c (GPa)
0,5 MPa	-4,14	-0,53	-0,0149			
	-6,63	-0,84	-0,0162			
$_{0,1} f_c$	-33,28	-4,24	-0,1308	-3,71	-0,0994	37,37
	-33,81	-4,31	-0,1323			
$0,2 f_c$	-63,21	-8,05	-0,2783	-7,52	-0,2311	32,56
	-63,96	-8,15	-0,2824			
$0,3 f_c$	-94,19	-12,00	-0,4377	-11,47	-0,3790	30,26
	-97,22	-12,38	-0,4553			
$_{0,4} f_c$	-126,20	-16,08	-0,6117	-15,55	-0,5426	28,66
	-129,84	-16,54	-0,6392			
$0,5 f_c$	-157,34	-20,04	-0,7920	-19,52	-0,7124	27,39
	-162,41	-20,69	-0,8317			
$0,6 f_c$	-188,26	-23,98	-0,9854	-23,46	-0,8942	26,23
	-190,53	-24,27	-1,0350			
$_{0,7} f_c$	-221,97	-28,28	-1,2223	-27,75	-1,1143	24,90
	-220,63	-28,11	-1,2828			
$0,8 f_c$	-250,66	-31,93	-1,5071	-31,40	-1,3792	22,77
	-249,62	-31,80	-1,6034			
	-254,05	-32,36	-1,6318			
	-257,93	-32,86	-1,6547			

	-261,62	-33,33	-1,6872		
	-265,35	-33,80	-1,7302		
	-272,70	-34,74	-1,8250		
	-275,12	-35,05	-1,8603		
	-279,04	-35,55	-1,9312		
	-280,06	-35,68	-1,9542		
	-284,72	-36,27	-2,0245		
	-286,77	-36,53	-2,0519		
	-290,64	-37,02	-2,1209		
	-293,45	-37,38	-2,1856		
	-301,10	-38,36	-2,4002		
Ruptura	-301,75	-38,44	-2,4762		

Módulo de Elasticidade CPIII 1

Figura B.4 – Gráfico tensão x deformação específica para o CP1 dos corpos-de-prova com $f_c = 37,08 MPa$.

PUC-Rio - Certificação Digital Nº 0410761/CA

≻ CP2

Leituras	Carga P (kN)	Tensão σ _c (MPa)	Deformação esp. Média E _c (%c)	$ \begin{array}{c} Tensão \\ (\sigma_n - \sigma_{inf}) \\ (MPa) \end{array} $	Deformação Esp. $(\varepsilon_n - \varepsilon_{inf})$ (%)	Módulo de Elasticidade Secante E _c (GPa)
0,5 MPa	-4,07	-0,52	0,0112			
	-5,45	-0,69	0,0082			
$0,1 f_c$	-33,31	-4,24	-0,1162	-3,72	-0,1273	29,24
	-33,57	-4,28	-0,1046			
$0,2 f_c$	-62,54	-7,97	-0,2368	-7,45	-0,2480	30,04
	-65,07	-8,29	-0,2312			
$0,3 f_c$	-94,58	-12,05	-0,3745	-11,53	-0,3856	29,90
	-93,45	-11,90	-0,3552			
$0,4 f_c$	-124,24	-15,83	-0,5058	-15,31	-0,5169	29,61
	-125,47	-15,98	-0,4983			
$0,5 f_c$	-157,81	-20,10	-0,6608	-19,58	-0,6720	29,15
	-163,35	-20,81	-0,6737			
$0,6 f_c$	-186,83	-23,80	-0,8149	-23,28	-0,8261	28,18
	-187,68	-23,91	-0,8312			
$0,7 f_c$	-219,22	-27,93	-1,0062	-27,41	-1,0174	26,94
	-213,21	-27,16	-0,9970			
$0,8 f_c$	-250,31	-31,89	-1,2351	-31,37	-1,2463	25,17
	-250,65	-31,93	-1,3064			
	-266,04	-33,89	-1,3831			
	-279,23	-35,57	-1,5275			
Ruptura	-280,36	-35,72	-1,9365			

Tabela B.5 – Resultados obtidos do ensaio do módulo de elasticidade do concreto para o CP2 dos corpos-de-prova da série III.

Módulo de Elasticidade CPIII 2

Figura B.5 – Gráfico tensão x deformação específica para o CP2 dos corpos-de-prova com $f_c=37,\!08MPa$.

Anexo C Ensaio de Resistência à Tração do CFC

As tabelas e gráficos constantes desse anexo mostram os resultados dos ensaios de resistência à tração do tecido de fibra de Carbono. realizados na máquina EMIC modelo DL 10.000 com capacidade de 100 *kN*, no Laboratório de ensaios Mecânicos do departamento de Materiais do IME - Instituto Militar de Engenharia –Rio de Janeiro.

➢ CP1

Tabela C.1 – Leituras do indicador manual de deformações VISHAY, no ensaio de resistência à tração do CFC do CP1.

Carga	Tensão	Deformação
Р	$\pmb{\sigma}_{f}$	Específica
(kN)	(MPa)	$\boldsymbol{\varepsilon}_{f}$ (me)
0	0	0
0,5	202,02	1160
1	404,04	2010
1,5	606,06	2860
2	808,08	3650
2,5	1010,10	3930
3	1212,12	4890
3,5	1414,14	5820
4	1616,16	6680
4,5	1818,18	7510
5	2020,20	8480
5,5	2222,22	9880
6	2424,24	10500
6,5	2626,26	11540
7	2828,28	12280
7,5	3030,30	13150
7,76	3136,81	13530

Figura C.1 – Gráfico tensão x deformação específica do o CP1.

≻ CP2

		Carga	Tensão	Deformação]
		Р	σ_{f}	Específica ε_f	
		(k N)	(MPa)	(με)	
		0	0	0	
		0,5	202,02	1010	
		1	404,04	1620	
		1,5	606,06	2400	
		2	808,08	3130	
		2,5	1010,10	3960	
		3	1212,12	4780	
		3,5	1414,14	5560	
		4	1616,16	6420	
		4,5	1818,18	7300	
		5	2020,20	8090	
		5,5	2222,22	8950	
		6	2424,24	9920	
		6,5	2626,26	10740	
		7	2828,28	11470	
		7,41	2993,62	12200	
	3500	v = 0	2474x		-
a)	3000	y = 0,2	_ 17 1X		
AP	2500				
	2000			. And the second	
sãc	1500			y	
en	1000				
Ĕ	500				
	0		1		
		0	5000	1000	0 15000

Deformação específica do CP2 (με)

Tabela C.2 – Leituras do indicador manual de deformações VISHAY, no ensaio de resistência à tração do CFC do CP2.

Figura C.2 – Gráfico tensão x deformação específica do o CP2.

≻ CP3

Tabela C.3 -	Leituras	do	indicador	manual	de	deformações	VISHAY,	no	ensaio	de
resistência à tr	ação do (CFC	do CP3.							

Carga	Tensão	Deformação
Р	σ_{f}	Específica
(kN)	(MPa)	$\boldsymbol{\varepsilon}_{f}\left(\boldsymbol{\mu}\boldsymbol{\varepsilon} ight)$
0	0	0
0,5	202,0202	750
1	404,0404	1430
1,5	606,0606	2200
2	808,0808	2780
2,5	1010,101	3520
3	1212,121	4240
3,5	1414,141	5120
4	1616,162	5820
4,5	1818,182	6590
5	2020,202	10280
5,5	2222,222	11400
6,06	2448,08	12480

Figura C.3 – Gráfico tensão x deformação específica do o CP3.

➢ CP4

Tabela C.4 –	Leituras	do	indicador	manual	de	deformações	VISHAY,	no	ensaio	de
resistência à tr	ação do (CFC	do CP4.							

Carga	Tensão	Deformação
Р	$\pmb{\sigma}_{f}$	Específica
(k N)	(MPa)	$oldsymbol{arepsilon}_f~(\muoldsymbol{arepsilon})$
0	0	0
0,5	202,02	530
1	404,04	1400
1,5	606,06	2210
2	808,08	2890
2,5	1010,10	3650
3	1212,12	4490
3,5	1414,14	5160
4	1616,16	5920
4,5	1818,18	6730
5	2020,20	7580
5,5	2222,22	8200
6,24	2523,07	9080

Figura C.4 – Gráfico tensão x deformação específica do o CP4.

> CP 5

Tabela C.5 –	Leituras	do	indicador	manual	de	deformações	VISHAY,	no	ensaio	de
resistência à tr	ação do (CFC	do CP5.							

Carga	Tensão	Deformação
Р	σ_{f}	Específica
(k N)	(MPa)	$oldsymbol{arepsilon}_f~(\muoldsymbol{arepsilon})$
0	0	0
0,5	202,02	1040
1	404,04	1930
1,5	606,06	2790
2	808,08	3940
2,5	1010,10	4610
3	1212,12	5560
3,5	1414,14	6240
4	1616,16	7100
4,5	1818,18	8050
5	2020,20	8880
5,5	2222,22	9930
6	2424,24	10600
6,5	2626,26	11210
6,76	2729,94	11840

Figura C.5 – Gráfico tensão x deformação específica do o CP5.

> CP 6

Carga	Tensão	Deformação				
Р	σ_{f}	Específica				
(kN)	(MPa)	$\boldsymbol{\varepsilon}_{f}$ ($\boldsymbol{\mu}\boldsymbol{\varepsilon}$)				
0	0	0				
0,5	202,02	1260				
1	404,04	2120				
1,5	606,06	2980				
2	808,08	3940				
2,5	1010,10	4660				
3	1212,12	5480				
3,5	1414,14	6320				
4	1616,16	7170				
4,5	1818,18	8040				
5	2020,20	8850				
5,5	2222,22	9770				
5,99	2418,51	10390				

Tabela C.6 – Leituras do indicador manual de deformações VISHAY, no ensaio de resistência à tração do CFC do CP6.

Figura C.6 – Gráfico tensão x deformação específica do o CP6.

Anexo D Resultados dos Ensaios de Aderências

Este anexo mostra os gráficos obtidos no ensaio de aderência para as deformações específicas lidas nos sete extensômetros colados ao tecido de CFC e os deslocamentos dos LVDT's posicionados nos blocos moveis A carga corresponde a força lida pela célula de carga durante os ensaios dos corpos-deprova.

D.1 Resultado do ensaio MCLI-1

Figura D.1 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLI-1.

Figura D.2 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLI-1.

D.2 Resultado do ensaio MCLI-2

Figura D.3 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLI-2.

Figura D.4 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLI-2.

D.3 Resultado do ensaio MCLII-1

Figura D.5 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLII-1.

Figura D.6 - Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLII-1.

D.4 Resultado do ensaio MCLII-2

Figura D.7 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLII-2.

Figura D.8 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLII-2.

D.5 Resultado do ensaio MCLIII-1

Figura D.9 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLIII-1.

Figura D.10 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLIII-1.

D.6 Resultado do ensaio MCLIII-2

Figura D.11 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCLIII-2.

Figura D.12 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCLIII-2.

D.7 Resultado do ensaio MCRI-1

Figura D.13 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRI-1.

Figura D.14 - Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRI-1.

D.8 Resultado do ensaio MCRI-2

Figura D.15 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRI-2.

Figura D.16 - Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRI-2.

D.9 Resultado do ensaio MCRI-3

Figura D.17 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRI-3.

Figura D.18 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRI-3.

D.10 Resultado do ensaio MCRII-1

Figura D.19 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRII-1.

Figura D.20 - Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRII-1.

D.11 Resultado do ensaio MCRII-2

Figura D.21 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRII-2.

Figura D.22 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRII-2.

D.12 Resultado do ensaio MCRIII-1

Figura D.23 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRIII-1.

Figura D.24 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRIII-1.

D.13 Resultado do ensaio MCRIII-2

Figura D.25 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova MCRIII-2.

Figura D.26 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova MCRIII-2.

D.14 Resultado do ensaio CDLI-1

Figura D.27 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova CDLI-1.

Figura D.28 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova CDLI-1.

D.15 Resultado do ensaio CDLII-1

Figura D.29 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova CDLII-1.

Figura D.30 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova CDLII-1.

D.16 Resultado do ensaio CDLIII-1

Figura D.31 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova CDLIII-1.

Figura D.32 - Gráfico carga x deslocamento do bloco móvel do corpo-de-prova CDLIII-1.

D.17 Resultado do ensaio CDRII-1

Figura D.33 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova CDRII-1.

Figura D.34 – Gráfico carga x deslocamento do bloco móvel do corpo-de-prova CDRII-1.

D.18 Resultado do ensaio CDRIII-1

Figura D.35 – Gráfico carga x deformação específica do tecido de fibra de carbono do corpo-de-prova CDRIII-1.

Figura D.36 – Gráfico a carga x deslocamento do bloco móvel do corpo-de-prova CDRIII-1.